User’s guide for OSLOM (version 1.5)

December 21, 2010

Thanks for downloading the code which implements OSLOM.

1 Compiling

The program comes along with a file called compile_all.sh.

Type

./compile_all.sh

from a Unix (MAC) terminal. If you are using Windows, you could still run the program
by installing MinGW (Minimalist GNU for Windows, http://www.mingw.org/). If you
see something like ./compile_all.sh: Permission denied, type:

chmod 744 compile_all.sh

which makes the script executable and try again with:

./compile_all.sh.

2 What you get

After compiling, you should see a number of binary files. oslom_undir and oslom_dir
implement OSLOM for undirected and directed networks. The option -f introduces the
name of the file where the network is stored. Try:

./oslom_undir -f example.dat -uw

and when the program is done (it takes about 90 seconds on a desktop computer), type:

./pajek_write_undir example.dat

Now look at the folder example.dat_oslo_files. You should see a few files, described
in the coming subsections.

2.1 The modules

The most important files are tp and tpl (tp is also copied in the main folder, for your
convenience).

In tp you find the set of (overlapping) modules at the lowest hierarchical level. The
file content looks like this:

#module 7 size: 18 bs: 8.31923e—11

71013 17 18 22 28 31 33 37 38 41 44 45 47 50 51 56

The line starting with # says that the module with id 7 has 18 nodes and score of 8.31923 e—11, which
is an estimation of the probability of finding a module like this one in a random network (very very low in
this case). To be specific, this is in fact an upper bound of the real significance. In any case, the program
stops when the score is below the p—value (note that it can be much much lower). The second line gives

the nodes in the module.

You should also see something like:

#module 21 size: 1 bs: 1

1000

This is telling you that node 1000 has not been assigned to any module, i.e. it forms a module on its

own. In other words, it is a homeless node.

tpl is the analogous for the first hierarchical level. In our example, this is all, there
are no other hierarchical levels for the network stored in example.dat. In general, if there
are further levels, the program will produce other files: tp2, tp3, etc..

2.2 The pajek files

Now open the file called pajek_file_0.net. The format of this file is the usual pajek format
and you can use Pajek (http://vlado.fmf.uni-1j.si/pub/networks/pajek/) and/or
Gephi (http://gephi.org/) to visualize the network. Each module of the lowest level
has a different color. Overlapping nodes are black, homeless nodes are white. The only
difference with pajek_file_1.net is that it has different colors to highlight higher level
modules.

If the visualization looks too small, try:

./pajek_write_undir example.dat 2.5

You would get another pajek file which would produce a picture twice and a half times
bigger. Type the command again, to have different visualizations (colors and positions are
chosen through a stochastic algorithm).

N. B.: All the output files are stored in the directory called [network file]_oslo_files.
If the directory is not empty it will be cleared, so be careful if you want to save some
previous output files.

2.3

What else?

This is not fundamental, so if you are impatient, skip this and go to Section 3.1.

Here is a list of the other output files:

1.

netl contains the edge list of the network of communities found at the lowest hier-
archical level. For instance,

0105

means that there are five links between node 0 and node 10. The labels 0 and 10
are the module ids of file tp. Likewise, file net2 stores the network of communities
found at the second hierarchical level, whose labels are those used for the modules
in file tpl, etc.. In the case of weighted networks, you would see four numbers like
these:

010 15.76 5

which means that there are five links between node 0 and 10 and the sum of the
weights of these links is 15.76.

short_tpl (short_tp2) gives the modules of the community network netl (net2,
net3, ...) using its labels, which refer to the ids of the modules listed in tp (tpl,

tp2, ...).

every_group(_1) is written all along the cluster search and includes the modules
found step by step. It can be very useful if you have a big network and you want to
parallelize the program. See below for details.

partitions_level 0(1) contains the pruned modules the program found at the end
of each run.

. statistics_level_0(1) contains some basic statistics of the modules found for each

hierarchical level.

statistics_level 0(1) contains some basic statistics of the modules found for each
hierarchical level.

pos_0 is written by pajek_write_undir. It gives the position of the nodes of ex-
ample.dat, the format is x y node. pos_1 is the analogous for the nodes in net1,
pos_2 for the nodes in net2, etc..

tp_without_singletons contains the first level modules with all the nodes assigned.
In general, the program finds a number of singletons. This file reports the modules
given by the program when forced to place all the nodes somewhere. You would get
the same result as default using option -all (see below).

3 OSLOM'’s Options

3.1 Basic Options

1. Directed vs Undirected. First of all, you need to choose between
./oslom_undir
and
./oslom _dir.

As you can easily guess, the former is for the undirected networks, the latter for
directed ones. The same holds for pajek_write_undir and pajek_write_dir. If you
have a directed network, the format of the input file is nodel node2, meaning that
there is a link from nodel to node2. Self loops and repetitions are ignored in both
cases.

2. -uw (-w) is the only mandatory flag.

Option -uw is for unweighted networks, or better it is for weighted networks where
considering weights as multiple links. This means that it is possible to use a format
for the network file like:

nodel node2
or
nodel node2 mqs

but mie must be an integer number! It tells how many links are between the two
nodes. In the null model, these links are randomly rewired along with all the links
of the network.

Option -w is to choose the weighted version of the algorithm. This selects a different
null model where the strength of a node is shared between its neighbors. The input
file can be:

nodel node2 wis
or
nodel node2 wis mio

where w12 is the weight between nodel and node2. If there are mis multiple links
between the two nodes, wio must be the sum of the weights on those links.

About the labels of the nodes, they must be non-negative integer numbers, but they
do not have to be consecutive and can start from any number.

3.2

Recommended Options

. -time h: this flag is useful to control the time for the module search. h is the maxi-

mum number of hours the program will spend exploring the network. A reasonable
choice can be between one and a few hours for every million nodes (roughly speak-
ing). We recommend to use this flag together with some of the flags listed below to
ensure a good exploration of the modules.

. -infomap r: the program will call another program (infomap) and will apply

OSLOM’s cleanup procedure to the modules found by it. r is the number of times
infomap will be called, good values are between 1 and 10. This is done to reduce the
complexity of the method, which could be too high on large networks, if the cluster
search is operated by OSLOM from scratch, without any input.

-copra 7, -louvain r are similar flags for other programs. They can be used si-
multaneously. The general idea is that the more programs are used, the better the
exploration of possible modules will be, but of course more time is needed.

-veryfast: this flag is to have the fastest possible results. It calls the louvain method
only once and OSLOM cleans up the modules of the corresponding partition. There
is no post-processing phase to decide about the merging or splitting of modules.

. -fast: this flag is also to have fast results. It calls the louvain method only once and

performs the post-processing. It is not so fast as the previous option, but results are
better.

Examples:

./oslom_undir -f example.dat -uw -time 0.005 -infomap 3 -copra 2 -louvain

This will run oslom on example.dat using our method to explore the graph with a
maximum search time of 0.005 hours, and the outputs of infomap after 3 iterations, of
copra after 2 and of louvain as initial conditions [Oslom cleans-up afterwards the found
modules]. The final output is formed by the best modules found with all these methods.

./oslom_undir -f example.dat -uw -infomap 1 -time 0

OSLOM runs on example.dat using as initial modules the output of infomap. Since
time = 0, our module search technique is not applied.

./oslom_undir -f example.dat -uw -fast

This is the fast version of OSLOM.

N. B.: All the external programs have been distributed because they are free. However,
if you use one or more of them for your research, please cite the paper where the method
is described. The references are listed at the end of this Guide.

3.3

1.

Advanced Options

-r m sets equal to m the number of runs for the first hierarchical level. The default
value is 10. This value depends on your patience. The bigger m, the more accurate
the results. We are working to let the program choose the optimal number of runs
according to the convergence of the results. The option -r 0 has to be employed
when OSLOM starts from a partition found by other algorithms.

-hr m sets the number of runs for higher hierarchical level equal to m. The default
value is 100 (the method should be faster since the aggregated network is usually
much smaller). If you are not interested in hierarchies set -hr 0 and the method will
stop after finding the lowest level partition.

-seed m. The program is not deterministic, so it needs a seed for its random number
generator. Using this option it will be set equal to m, otherwise the seed will be set
reading the file time_seed.dat, which will be updated afterwards.

. -t [sets the p—value equal to I. The default value is 0.10. Interestingly, if you

increase this value you get more modules. The reason is that submodules are more
easily considered significant.

. -all: no singletons. The program generally finds a number of nodes which are not

assigned to any module. By setting this flag, the program will assign each node to at
least one module. The module is selected based on the value of the score of the node
with respect to the existing modules: the module with lowest score will “accept” the
node. This only applies to the lowest hierarchical level.

Example:

./oslom_undir -f example.dat -uw -hr 0 -r 1 -seed 10 -t 0.01 -all

-hint filename: reads a file with a partition previously found by another algorithm.
The file has to be formatted like tp (lines starting with # are skipped, so they are
optional): it simply has to contain the modules separated by an end of line. All the
modules read from the file will be cleaned up by the algorithm, which would retain
only the significant ones. Then, the program would look for submodules and cleanup
all of them. The outcoming clusters will be written in file partitions_level 0, to-
gether with the modules found during the cluster search (unless you set -r 0). This
option can be used only for the first hierarchical level.

Example:

Copy the tp file that you got before in the main folder:

cp example.dat_oslo_files/tp htp

Swap randomly some nodes among the modules in file htp. You may also erase
nodes from the file or even add new node labels, in which case the program will warn
you that there is a mismatch between the nodes of the networks and those of the
partition. Type:

./oslom_undir -f example.dat -uw -r 0 -hr 0 -hint htp

The previous example.dat_oslo_files /tp will be cleared and replaced by the cleaned
up partition read from the initial guess htp.

. -e “./my_program -options- NETx -other options-” “community_output”:

can be used to analyze the network with another program and automatically use the
modules given by that.

NETx is a keyword. It has to be present in the string. It will be replaced with the
network file to be analyzed. The executable my_program has to be located in the
same folder with this program and the network file. This program will run the string

“./my_program -options- networkfile -other options-".
my_program is expected to read the file networkfile (which contains the network)

and write the modules in the file specified in the latter string, “community_output”
in the example, whose format has to be the same as for option -hint above.

The format of the network file can be “nodel node2” or “nodel node2 weight”
if the network is weighted.

You can use this same option more than once if you would like to include more than
one program in the analysis.

Example:

./oslom_undir -f example.dat -uw -e “java -cp copra.jar COPRA NETx
-mo -repeat 10 -v 5 -w” “clusters-NETx” -r 0 -hr 0

You can see the syntax: there is -e, then the string “java -cp copra.jar COPRA
NETx -mo -repeat 10 -v 5 -w” with the keyword NETx instead of the network
file, and the string “clusters-NETx” for the output.

. -load filename: reads a file with a partition previously found by OSLOM. The file
must have the format of the output file tp (see Section 2.1). In particular, this option
can be useful if you want to parallelize the program. You have to run OSLOM in
different folders with different seeds (option -seed). If the program takes too long,
you can copy the modules found in the files every_group in one single file and
use this option to prune the modules. This option can be used only for the first
hierarchical level.

4 References
If you used this program for your research, please cite this paper: (to appear)
In addition, please cite the following papers if you used -copra, -louvain or -infomap.

1. if you used -copra, please cite: Steve Gregory, New J. Phys. 12, 103018 (2010).

2. if you used -infomap, please cite: M. Rosvall and C. T. Bergstrom, Proc. Natl.
Acad. Sci. U.S.A 105, 1118 (2008).

3. if you used -louvain, please cite: V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and
E. Lefebvre, J. Stat. Mech. P10008 (2008).

Further information and the source codes can be found in the following urls:

1. copra: http://www.cs.bris.ac.uk/~steve/networks/software/copra.html
2. infomap: http://www.tp.umu.se/~rosvall/code.html

3. louvain: http://sites.google.com/site/findcommunities/

