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Abstract

Community structure is one of the main structural features of networks, revealing both their internal organization and the
similarity of their elementary units. Despite the large variety of methods proposed to detect communities in graphs, there is
a big need for multi-purpose techniques, able to handle different types of datasets and the subtleties of community
structure. In this paper we present OSLOM (Order Statistics Local Optimization Method), the first method capable to detect
clusters in networks accounting for edge directions, edge weights, overlapping communities, hierarchies and community
dynamics. It is based on the local optimization of a fitness function expressing the statistical significance of clusters with
respect to random fluctuations, which is estimated with tools of Extreme and Order Statistics. OSLOM can be used alone or
as a refinement procedure of partitions/covers delivered by other techniques. We have also implemented sequential
algorithms combining OSLOM with other fast techniques, so that the community structure of very large networks can be
uncovered. Our method has a comparable performance as the best existing algorithms on artificial benchmark graphs.
Several applications on real networks are shown as well. OSLOM is implemented in a freely available software (http://www.
oslom.org), and we believe it will be a valuable tool in the analysis of networks.
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Introduction

The analysis and modeling of networked datasets are probably the

hottest research topics within the modern science of complex systems

[1–7]. The main reason is that, despite its simplicity, the network

representation can disclose some relevant features of the system at

large, involving its structure, its function, as well as the interplay

between structure and function. The elementary units of the system

are reduced to simple points, called vertices (or nodes), while their

pairwise relationships/interactions are pictured as edges (or links). It is

fairly easy to spot the two main ingredients of a graph in many

instances. Therefore networks can be found everywhere: in biology

(e. g., proteins and their interactions), ecology (e. g., species and their

trophic interactions), society (e. g., people and their acquaintance-

ships). Other noteworthy examples include the Internet (routers/

autonomous systems and their physical and/or wireless connections),

the World Wide Web (URLs and their hyperlinks), etc.

The structure of most networks, beneath the intrinsic disorder

due to the stochastic character of their generation mechanisms,

reveals a high degree of organization. In particular, vertices with

similar properties or function have a higher chance to be linked to

each other than random pairs of vertices and tend to form highly

cohesive subgraphs, which are called communities (also modules or

clusters). Examples of communities are groups of mutual acquain-

tances in social networks [8–10], subsets of Web pages on the same

subject [11], compartments in food webs [12,13], functional

modules in protein interaction networks [14], biochemical

pathways in metabolic networks [15,16], etc.

Detecting communities in graphs may help to identify functional

subunits of the system and to uncover similarities among vertices

that are not apparent in the absence of detailed (non-topological)

information. Vertices belonging to the same community may be

classified according to their structural position within the cluster,

which may be correlated to their role. Vertices in the core of the

cluster may have a function of control and stability within the

module, whereas boundary vertices are likely to be mediators

between different parts of the graph. The community structure of

a network can also be a powerful visual representation of the

system: instead of visualizing all the vertices and edges of the

network (which is impossible on large systems), one could display

its communities and their mutual connections, obtaining a far

more compact and understandable description of the graph as a

whole. It is thus not surprising that community detection in graphs

has been so extensively investigated over the last few years [17]. A

huge variety of different methods have been designed by a truly

interdisciplinary community of scholars, including physicists,

computer scientists, mathematicians, biologists, engineers and

social scientists.

However, most algorithms currently available cannot handle

important network features. Many methods are designed to find

clusters in undirected graphs, and cannot be easily (or not at all)

extended to directed graphs. However, there are many datasets for
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which edge directedness is an essential feature. Citation networks,

food webs and the Web graph are but a few examples. Similar

problems arise when edges carry weights, indicating the strength of

the interaction/affinity between vertices, although extensions are

generally easier in this case.

Likewise, the great majority of algorithms are not capable to

deal with the peculiar features of community structure. For

example, each vertex is typically assigned to a single cluster, while

in several instances, like in social networks, vertices are typically

shared between two or more clusters. In such cases communities

are overlapping (and partitions become covers) and very few methods

account for this possibility [18–25], which considerably increases

the complexity of the problem. Furthermore, community structure

is very often hierarchical, i.e. it consists of communities which

include (or are included by) other communities. Hierarchies are

common in human societies and are crucial for an efficient

management of large organizations. Simon pointed out that

hierarchy gives robustness and stability to complex systems,

yielding an evolutionary advantage on the long run [26].

However, most community finding methods typically look for

the ‘‘best’’ partition of a network, disregarding the possible

existence of hierarchical structure. Instead, a method should be

able to recognize if there is hierarchical structure and, if yes,

identify the corresponding levels [27–29].

It is also very important for a method to distinguish

communities from pseudo-communities. The existence of clusters

indicate a preference by some groups of vertices to link to each

other. But, if the linking probability is the same for all pairs of

vertices, like in random graphs, no communities are expected. In

this case, concentrations of edges within groups of vertices are

simply the result of random fluctuations, they do not represent

potentially non-trivial structures. Many algorithms are not able to

see this difference and find clusters in random graphs as well,

although they are not meaningful. Scholars have just begun to

assess the issue of significance of clusters [30,31].

Finally, given the recent availability of time-stamped networked

datasets, it is now possible to carry out quantitative studies on the

dynamics of community structure, about which very little is known

[32–37]. A simple way to treat dynamic datasets is to analyze

snapshots of the system at different times separately, and then map

communities of different snapshots onto each other, such that one can

follow the dynamic of each cluster in time. However, focusing on

individual snapshots means disregarding the information on the

system at previous times. Ideally a partition/cover of the system at

time t should be faithful both to its structure at time t and to its history

[34,37].

In this paper we propose the first method able to meet all

requirements listed above, the Order Statistics Local Optimization

Method (OSLOM). It is a method that optimizes locally the

statistical significance of clusters, defined with respect to a global

null model. The concept of statistical significance is inspired by

recent work of some of the authors [31,38]. The paper is

structured as follows. After introducing the method, we test its

performance on artificial benchmark graphs, comparing it with the

performances of the best algorithms currently available. Next, we

pass to the analysis of real networks, followed by a final discussion

on the work. Some of the tests on artificial and real networks are

reported in the Supporting Information S1.

Methods

Statistical significance of clusters
In this section we explain how to estimate the statistical

significance of a given cluster. OSLOM will use the significance as

a fitness measure in order to evaluate the clusters. Following our

previous work [31], we define it as the probability of finding the

cluster in a random null model, i. e. in a class of graphs without

community structure. We choose the configuration model [39] as

our null model. This is a model designed to build random

networks with a given distribution of the number of neighbors of a

vertex (degree). The networks are generated by joining randomly

vertices under the constraint that each vertex has a fixed number

of neighbors, taken from the pre-assigned degree distribution. This

is basically the same null model adopted by Newman and Girvan

to define modularity [40].

We start from a graph G with N vertices and E edges. The

framework for the analysis is sketched in Fig. 1. We are given a

subgraph C, whose significance is to be assessed, a vertex i 6[ C and

the degree of the vertices of the rest of the graph G\½C|fig�. The

degree of subgraph C is mC, ki is the degree of i, and the rest of

vertices have a total degree M. We can separate the above

quantities in the contributions internal or external to C
(min
C ,mout

C ,kin
i and kout

i ); the internal degree of G\½C|fig� is M�

(Fig. 1).

Let us suppose that C is a subgraph of graphs generated by the

configuration model, where each vertex maintains the degree it

has on the graph G at study. We assume that the internal degree

min
C of the subgraph is fixed. If all the other edges of the network

are randomly drawn, the probability that i has kin
i neighbors in C

can be written as [38]

p(kin
i ji,C,G)~A

2
{kin

i

kout
i ! kin

i !(mout
C {kin

i )!(M�=2)!
: ð1Þ

This equation enumerates the possible configurations of the

network with kin
i connections between i and C. The factorials of

the formula express the multiplicity of configurations with fixed

Figure 1. A schematic representation of a subgraph C, whose
significance is to be assessed. The subgraph C is embedded within
a random graph generated by the configuration model. The degrees of
all vertices of the network are fixed, in the figure we have highlighted
the degrees of C (mC), of the vertex i at the center of the analysis (ki)
and of the rest of the graph G\½C|fig� (M). These quantities are
expressed as sums of contributions which are internal to their own set
of vertices (as M�) or related to subgraph C (in or out). This notation is
used in the distribution of Eq. 1.
doi:10.1371/journal.pone.0018961.g001
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values of kin
i , kout

i , (mout
C {kin

i ) and M�=2, whereas the power of 2

in the numerator stays for the multiplicity coming from the

permutation of the extremes of edges lying between i and C.
Several of the terms in the expression can actually be written as a

function of constants and kin
i , such as kout

i ~ki{kin
i and

M�~2E{mC{mout
C {2kiz2kin

i . The normalization factor A

includes terms not depending on kin
i and ensures that

X
kin

i
:M�§0

p(kin
i ji,C,G)~1: ð2Þ

Further details on the numerical implementation of the formula in

Eq. 1, as well as on the different approximations taken and their

limits, are included in the Supporting Information S1.

The probability of Eq. 1 provides a tool to rank the vertices

external to C according to the likelihood of their topological

relation with the group. If vertex i shares many more edges with

the vertices of subgraph C than expected in the null model, we

could consider the inclusion of i in C, since the relationship

between i and C is ‘‘unexpectedly’’ strong. In order to perform the

ranking the cumulative probability r(kin
i )~

Pki

j~kin
i

p(jji,C,G) of

having a number of internal connections equal or larger than kin
i is

estimated, following Ref. [31]. Given that the vertex degree is a

discrete variable, the cumulative distribution has a specific step-

wise profile for each value of ki. In order to facilitate the

comparison of vertices with different degrees, we implement a

bootstrap strategy by assigning to each vertex i a value of r, ri,

randomly drawn from the interval ½r(kin
i ),r(kin

i z1)�. This choice
is important for a meaningful estimate of the clusters’
significance; other options (e. g., taking the middle
points of the interval) could lead to the identification of
meaningful clusters in random graphs. The bootstrap

introduces a stochastic element in the assessment procedure, which

will, in turn, lead to the use of Monte Carlo techniques.

The variable r bears the information regarding the likelihood of

the topological relation of each vertex with C and has an important

feature: it is a uniform random variable distributed between zero

and one for vertices of our null model graphs. Calculating its order

statistic distributions is thus a relatively easy task. The first

candidate among the external vertices to be part of C is the vertex

with the lowest value of r, that we indicate r1. The cumulative

distribution of r1 in the null model is then given by

V1(r)~P(r1vr)~1{(1{r)N{nC , ð3Þ

where nC is the number of vertices in C. In general, let rq be the

value of variable r with rank q (in increasing order of the variable

r). Its cumulative distribution is (Fig. 2):

Vq(r)~p(rqvx)~
XN{nC

i~q

N{nC

i

� �
xi(1{x)N{nC{i: ð4Þ

The reason for the use of order statistics is that we assume that

clustering methods tend to include in each community those

vertices which are most strongly connected to vertices of the

community. Due to correlations (the vertices in the clusters tend to

be connected), we cannot calculate the statistics of the internal

connections to the clusters, but we can do it safely for the external

vertices. The values of the different Vq inform us of how much the

external vertices of a group are compatible with the statistics

expected in the null model. To evaluate the full group, we define

cm~ minqfVq(rq)g among all the neighbors of C, where rq are

their corresponding ranked values for the r variable. The

distribution of cm can be easily tabulated numerically since it

only depends on N{nC. The cumulative distribution will be

denoted as P(cmvx)~w(x,N{nC). In the following, we call

w(cm,N{nC) the score of the cluster C.

Single cluster analysis
Now that a score to evaluate the statistical significance of the

clusters has been introduced, the next step is to optimize the score

across the network by dividing it into proper clusters. We describe

first the optimization of a single cluster score and will extend later

the method to deal with the full network. First of all one has to give

the method a certain tolerance, in the following referred to as P.

This parameter establishes when a given value of the score is

considered significant. Our procedure consists of two phases: first,

we explore the possibility of adding external vertices to the

subgraph C; second, non-significant vertices in C are pruned. They

are described below and illustrated schematically in Fig. 3.

1. For each vertex i outside C and connected to it by at least one

edge the variable r is computed. Then we calculate V1(r) for

the vertex with the smallest r, by using Eq. 3. If

w(V1(r),N{nC)vP, we add the corresponding vertex to the

subgraph, which we now call C0 . If w(V1(r),N{nC)wP, one

checks the second best vertex, the third best vertex, etc. If there

is finally a vertex, say the q-th best vertex, for which

w(Vq(r),N{nC)vP, one includes all q best vertices into

subgraph C, yielding subgraph C0 . At this point, no other vertex

outside C deserves to enter the community since all the external

vertices are compatible with the statistics of the random

configuration model. It may also happen that the inequality

wvP above holds for no external vertex, in which case we add

no vertices to C and C0~C. Either way, we pass to the second

stage with the subgraph C0 .
2. For each vertex i in C0 the variable ri with respect to the set

C0 \fig is estimated. We pick the ‘‘worst’’ vertex w of the cluster,

Figure 2. Probability distributions of the scores r of vertices
external to a given subgraph C of the graph. The score rq is the q-
th smallest score of the external vertices. In this particular case there are
10 external vertices. In the figure, we plot p(r1), p(r2), p(r3), p(r4), p(r5)
(from left to right). As an example, the shaded areas show the
cumulative probability Vq for a few values of r that would correspond
to the values estimated in a practical situation. In this case, the black
area, q~4, is the least extensive and so cm~V4 . If w(cm)vP, the vertices
with scores r1 , r2 , r3 and r4 will be added to C.
doi:10.1371/journal.pone.0018961.g002
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i. e. the vertex with the highest value of ri. To check for its

significance we repeat step 1 for the subgraph C0 \fig. If w turns

out to be significant, we keep it inside C0 and the analysis of the

cluster is completed. Otherwise, w is moved out of C0 and one

searches for the worst internal vertex of C0 \fwg. At some point

we end up with a cluster C�, whose internal vertices are all

significant and the process stops.

The two-steps procedure is a way to ‘‘clean up’’ C. A cluster is

left unchanged only if all the external vertices are compatible with

the null model and all the internal vertices are not. A few remarks

are important here:

N There can be both good vertices outside C and bad ones inside.

It is important to perform the complete procedure described

above, which guarantees that the final cluster is significant with

respect to the present null model (see also Ref. [31]).

N The procedure is not deterministic, because of the stochastic

component in the computation of the cumulative probability r.

So one shall repeat all the steps several times. The cluster

analysis may deliver a subgraph C0 , in general different from C,
or an empty subgraph. For each vertex i we compute the

participation frequency fi, defined as the ratio between the

number of times i belongs to any non-empty C0 and the total

number of iterations leading to non-empty subgraphs. In

general, we consider the subgraph C to be a significant cluster

if the single cluster analysis yields a non-empty subgraph C0 in

more than 50% iterations. The final ‘‘cleaned’’ cluster includes

those vertices for which fiw0:5.

N In the worst-case scenario, the complexity of the cluster

analysis scales with the number of vertices of C, times the

number of neighbors of C, times the number of loops needed to

have reliable values for the fi’s. The situation can be

considerably improved by keeping track of the order of the

external vertices at each step (using suitable data structures)

and by computing the score only for some reasonably good

vertices. For instance, one could pick just those vertices with

rv0:1. We numerically checked that changing this threshold

does not affect the results, but leads to a faster algorithm.

Network analysis
The previous procedure deals with a single cluster C. It finds the

external significant vertices and includes them into C. It also

prunes those internal vertices that are not statistically relevant.

Now we extend this procedure by introducing an algorithm able to

analyze the full network. In order to do so, we follow the method

proposed by some of the authors in Ref. [23]. The starting point is

a single vertex, taken at random, in the absence of any

information. Let us suppose that we start from a random vertex

Figure 3. Schematic diagram of the single cluster analysis.
doi:10.1371/journal.pone.0018961.g003
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i and that our first group is C~fig. The method proceeds as

follows:

1. q vertices are added to C, considering the most significant

among the neighbors of the cluster. The number q is taken

from a distribution, which in principle can be arbitrary. We

choose a power law with exponent {3.

2. Perform the single cluster analysis.

We repeat the whole procedure starting from several vertices in

order to explore different regions of the network. This yields a final

set of clusters that may overlap. Such type of local optimization

was originally implemented in the Local Fitness Method [23], to

handle overlapping communities. The algorithm stops when it

keeps finding similar modules over and over. Ideally one wishes to

encounter the exact same clusters repeatedly. However, the

stochastic element introduced when calculating the vertex score

can lead vertices, whose score is close to the threshold, to change

their group assignments from one realization to another. This can

be a problem when we are trying to decide whether two groups in

different instances correspond to the same cluster. As a practical

rule, we say that two groups C1 and C2 are similar if

jC1|C2j=min(jC1j,jC2j)w0:5, in which case they deserve further

attention. Indeed, it turns out that many of the clusters found are

very similar or combinations of each other. This leads to a very

important question: given a set of significant clusters, which ones

should be kept?

Let us consider the problem of choosing between two clusters C1

and C2 and the union of the two, C3. A solution is to consider the

subgraph G3 of the vertices in C3 and see if C1 and C2 are

significant as modules of G3. Strictly speaking we consider C01 and

C02 which are the cleaned up clusters within G3 (i.e. with respect to

subgraph G3 only, neglecting the rest of the network). We discard

C3 if jC01|C
0

2jwP2
:jC3j, where we set P2~0:7. Otherwise we

discard C1 and C2 and we keep the union C3. Instead, if we have to

decide among a set of k clusters and their union, the condition to

prefer the submodules is |iC
0

iwP2
:jCuj.

In general, we check if each cluster has significant submodules,

by looking for modules in the subgraph given by the cluster and

using the condition above to decide which ones to take. This leads

to a set of significant minimal clusters, where minimal means that

they have no significant internal cluster structure, according to the

condition above. We also need to check whether unions of such

minimal clusters do have internal cluster structure, according to

our rule, to decide whether the clusters have to be kept separated

or merged. After doing this, we still end up with many similar

modules. Given a pair of similar modules (in the sense defined

above), we first check if their union has significant cluster structure:

if it does not, we merge the two clusters, otherwise we

systematically prefer the bigger one (if they are equal-sized, we

pick the cluster with smaller score).

After the completion of this procedure, the output is a cover of

the network. To reduce the stochasticity introduced by the

bootstrap, the procedure is repeated in order to obtain several

covers. All clusters of the covers are analyzed as described above to

select among them the ones which will appear in the final output.

The parameter values may affect the outcome of OSLOM. The

value of the significance level P plays an important role for the

determination of the size of the clusters found by OSLOM. In

general, small values of P lead to the identification of large

clusters, and large values of P allow the identification of small

clusters. Likewise, large values of the parameter P2, which controls

the internal structure of modules, generally lead to the identifi-

cation of large clusters. The influence of the parameter values is

however relevant only when the community structure of the

network is not pronounced. When modules are well defined, the

results of OSLOM do not depend on the particular choice of the

parameter values.

OSLOM
We have described the cleaning of a single cluster and how the

full network is analyzed. In the following, all the ingredients are

assembled together to form the algorithm that we call OSLOM

(Order Statistics Local Optimization Method). A flux diagram

summarizing how it works can be seen in Fig. 4. OSLOM consists

of three phases:

N First, it looks for significant clusters, until convergence;

N Second, it analyzes the resulting set of clusters, trying to detect

their internal structure or possible unions thereof;

N Third, it detects the hierarchical structure of the clusters.

To speed up the method, one can start from a given partition/

cover delivered by another (fast) algorithm or from a priori

information. In those cases, the first step will be to clean up the

given clusters.

Once the set of minimal significant clusters has been found, the

analysis of the hierarchies consists of the following steps. We

construct a new network formed by clusters, where each cluster is

turned into a supervertex and there are edges between super-

vertices if the representative clusters are linked to each other. The

resulting superedges are weighted by the number of edges between

the initial clusters. There is the problem of properly assigning

edges between clusters, if the edges are incident on overlapping

vertices. Suppose to have an edge whose endvertices i and j belong

to ni and nj clusters, respectively. This edge lies simultaneously

between any pair of clusters Ci and Cj , with Ci including i and Cj

including j. The contribution of the edge to the superedge between

Ci and Cj equals 1=(ni
:nj). The resulting non-integer weights may

lead to non-integer values for the weight of superedges, whereas

we need integer values in order to use Eq. 1. For this reason, the

weight of each superedge is rounded to the nearest integer value.

We stress that the weight we deal with here indicates just how to

‘‘split’’ edges, it is not related to the weight that edges may carry. If

the original network is weighted, the rescaled weight of an edge is

w=(ni
:nj), w being the weight of the edge in the network. Once the

supernetwork has been built, one applies the method again,

obtaining the second hierarchical level. The latter is turned again

into a supernetwork, as we explained above, and so on, until the

method produces no clusters. In this way OSLOM recovers the

hierarchical community structure of the original graph.

We will describe next the main features of OSLOM, and what it

adds to the state of the art in community detection.

Significant clusters. The main characteristic of OSLOM is

that it is based on a fitness measure, the score, that is tightly related

to the significance of the clusters in the configuration model. In

fact, the single cluster analysis is designed to optimize the cluster

significance as defined in Ref. [31]. Therefore the output of

OSLOM consists of clusters that are unlikely to be found in an

equivalent random graph with the same degree sequence. The

tolerance P, fixed initially, determines whether such clusters are

‘‘unexpectedly unlikely’’, and therefore significant, or not. So, if

the method is fed with a random graph, the output will include

very few clusters or even none at all.

Homeless vertices. The vertices in a random network will be

deemed as homeless. Homeless vertices are those that are not

assigned to any cluster. This is a very important feature that

OSLOM includes. The presence of random noise or non-significant

Finding Significant Communities in Networks
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vertices is an issue that may occur in many real systems. However,

very few clustering techniques take into account this possibility. In

OSLOM, it comes as a natural output. We will quantitatively

analyze this feature when we test the method on benchmark graphs.

Overlapping communities. A natural output of OSLOM is

the possibility for clusters to overlap. Since each cluster is

‘‘cleaned’’ independently of the others, a fraction of its vertices

may belong also to other clusters, eventually. We will show the

efficiency of OSLOM in unveiling overlapping vertices in suitably

designed benchmarks.

Cluster hierarchy. Another relevant feature of OSLOM is

the analysis of the hierarchical structure of the clusters. As

mentioned above, the third phase of our method includes a

procedure to take care of this issue. The results are very good on

hierarchical benchmarks.

OSLOM generally finds different depths in different hierarchi-

cal branches. In fact, when the algorithm is applied not all vertices

are grouped, as some of them are homeless. The coexistence of

homeless vertices with proper clusters yields a hierarchical

structure with branches of different depths.

Weighted networks. OSLOM can be generalized to

weighted graphs as well. We assume that the contributions to

the probability of having a connection between two vertices i and j
with a certain weight wij , given the vertex degrees ki and kj and

Figure 4. Flux diagram of OSLOM. The levels of grey of the squares represent different loop levels. One can provide an initial partition/cover as
input, from which the algorithm starts operating, or no input, in which case the algorithm will build the clusters about individual vertices, chosen at
random. OSLOM performs first a cleaning procedure of the clusters, followed by a check of their internal structure and by a decision on possible
cluster unions. This is repeated with different choices of random numbers in order to obtain better statistics and a more reliable information. The final
step is to generate a super-network for the next level of the hierarchical analysis.
doi:10.1371/journal.pone.0018961.g004
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their strengths, si and sj , is separable in two different terms in the

configuration model: one for the topology and another for the

weight [38]. The strength of a vertex is defined as the sum of the

weights of all the edges incident on it. We approximate the weight

contribution by

p(wijwxjki,kj ,si,sj)~exp({x=SwijT), ð5Þ

where SwijT~2SwiTSwjT=(SwiTzSwjT) is the harmonic mean of

the average weights of vertices i and j, defined as SwiT~si=ki and

SwjT~sj=kj , respectively. The idea behind this expression is that

the weight of an edge of the null model should be proportional to

the average weight of its endvertices. We proposed the harmonic

average because it is more sensitive to the small values of SwT.

We use this distribution to define a new variable rw, accounting

for the probability of having a certain weight on a given edge with

the strengths of the vertices and the general weight distribution

known. We combine this variable rw with its topological

counterpart, rt, obtaining a new variable rwt. This is a non-trivial

task since both probabilities are defined on a different set of

elements (see the Supporting Information S1). For rwt we can

estimate, as before, the order statistic distributions and we proceed

just as we do for unweighted graphs.

Directed graphs. OSLOM can be easily generalized to

handle directed graphs. For that, we need to define two uniformly

distributed random variables rout and rin. The former is based on

the probability that vertex i has outgoing edges ending on vertices

of the given subgraph C, the latter is based on the probability that i
has incoming edges originating from vertices of C. These two

probabilities are computed through analogous formulas as in Eq. 1

or numerical approximations to it. The final score of vertex i is

given by the product rin
:rout. We are able to calculate the

distribution of this product and therefore to estimate its order

statistics (just as for the weighted case, see Section 1.1. of

Supporting Information S1). The rest of the clustering method

proceeds as explained above. If graphs have edges with both

directions and weights, we have four variables for each vertex: rin,

rout and the corresponding versions for the weights. The final score

is given again by the product of these four variables.

Dynamical networks. Time-stamped networked datasets

are usually divided into snapshots, condensing the relational

information between vertices within different time windows.

Snapshots are typically analyzed separately, whereas it would be

more informative to combine the information from different time

slices. For instance, consider two snapshots Gt and GtzDt at times t
and tzDt, respectively. A simple idea is to find the partition/cover

of the network at time t, by applying the method to the

corresponding snapshot, and to use the result as an input for the

application of the method to the network at time tzDt. In this

way one can see how the community structure at time t ‘‘evolves’’

to that at time tzDt. This is a rather general approach, it can be

adopted for other algorithms for community detection, like greedy

optimization techniques. OSLOM has the useful property that it

can start from any initial partition/cover, which can be given as

input. In this way the clusters found in Gt can be used as initial

condition for the analysis of GtzDt. With this approach, the new

partition/cover is closer to that in Gt and we are able to track the

groups’ evolution. Naturally, if the two snapshots are very different

from each other (because they refer to times between which the

system has changed considerably, for instance), OSLOM produces

a partition/cover in GtzDt that is uncorrelated with that of Gt.

Complexity. The complexity of OSLOM cannot be

estimated exactly, as it depends on the specific features of the

community structure at study. Therefore we carried out a

numerical study of the complexity, whose results are shown in

Fig. 5. We apply the method on the LFR benchmark [41], that we

have used extensively to test the performance of OSLOM. We

have used both the standard version of the algorithm and a fast

implementation, in which the algorithm acts on the partition

delivered by a quick method. For each version we have considered

undirected and unweighted LFR benchmark graphs with two

different levels of mixtures between the clusters (m~0:1 and

m~0:6, corresponding to well separated and well mixed clusters).

The other parameters needed to build the LFR benchmark graphs

are the same as for the graphs used in Fig. 6. The diagram of Fig. 5

shows the execution time (in seconds) as a function of the number

N of vertices of the graphs. The processes were run on a

workstation HP Z800. The time scales as a power law of N with

good approximation, if the graphs are not too small. The behavior

seems to depend neither on how mixed communities are, nor on

the particular implementation of the algorithm (there seems to be

just a factor between the corresponding curves). Power law fits of

the large-N portion of the curves yield an exponent 1:1(1), which

implies that the complexity is essentially linear in this case.

Results

Artificial networks
In this section we test OSLOM against artificial benchmarks,

comparing its performance with those of the best algorithms

currently available. We mostly adopted the LFR benchmark

[41,42], a class of graphs with planted community structure and

heterogeneous distributions of vertex degree and community size.

Tests on the well known Girvan-Newman (GN) benchmark [8] are

shown in the Supporting Information S1. In this section we

present tests on undirected and unweighted networks, with and

without hierarchical structure and overlapping communities. We

also show how OSLOM handles the presence of randomness in

the graph structure. Tests on weighted networks and on directed

networks can be found in the Supporting Information S1.

In the following sections, for each network, we compose the

results of 10 iterations for the network analysis for the first

hierarchical level and the results of 50 iterations for higher levels, if

any. The single cluster analysis was repeated 100 times for each

cluster.

Figure 5. Complexity of OSLOM. The diagram shows how the
execution time of two different implementations of the algorithm scales
with the network size (expressed by the number of vertices), for LFR
benchmark graphs.
doi:10.1371/journal.pone.0018961.g005
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LFR benchmark. The LFR benchmark [41,42], like the GN

benchmark, is a particular case of the planted ‘-partition model [43],

which is the simplest possible model of networks with

communities. The planted ‘-partition model is a class of graphs

whose vertices are divided into ‘ equal-sized groups, such that the

probability that two vertices of the same group are linked is p,

while the probability that two vertices of different groups are

linked is q, with pwq. The planted ‘-partition model is too simple

to describe real networks. Vertices have essentially the same

degree and communities have the same size, at odds with

empirical analysis showing that both features typically are

broadly distributed [19,44–48]. Therefore we have recently

proposed a generalization of the model, the LFR benchmark, by

introducing power-law distributions for the vertex degree and the

community size, with exponents t1 and t2, respectively [41]. The

LFR benchmark poses a far harder challenge to algorithms than

the benchmark by Girvan and Newman, which is regularly used in

the literature, and is more suitable to spot their limits. We are of

course aware that the communities of the model are still too simple

to match the communities of real networks. Other features should

be introduced, to tailor the model graphs onto the real graphs.

This is certainly doable, and could be specialized to the particular

domain of applicability one is interested in. Still, the clusters of the

LFR benchmark are a much better proxy of real communities

than the clusters of other benchmark graphs.

Vertices of the LFR benchmark have a fixed degree (in this case

taken from the given power law distribution), so the two

parameters p and q of the planted ‘-partition model are not

independent and we choose as independent variable the mixing

parameter m, which is the ratio of the number of external neighbors

of a vertex by the total degree of the vertex. Small values of m
indicate well separated clusters, whereas for higher and higher

values communities become more and more mixed to each other.

As a term of comparison we used Infomap [49], which has

proved to be very accurate on artificial benchmark graphs [50].

Fig. 6 shows the comparative performance of OSLOM and

Infomap on the LFR benchmark, with undirected and unweighted

edges and non-overlapping clusters. As a measure of similarity

between the planted partition and that recovered by the algorithm

we adopted the Normalized Mutual Information (NMI) [51], in

the extended version proposed in Ref. [23], which enables one to

compare both partitions and covers. We used this definition also

for hard planted partitions, since modules found by OSLOM may

be overlapping. In all tests on artificial graphs each point is always

an average over 100 realizations.

The plots correspond to two network sizes, N~1000 and

N~5000, and two ranges of community size, ½10,50� (‘‘small’’)

and ½20,100� (‘‘big’’), that we indicate with the letters S and B,

respectively. In this way we can check how much the performance

of the algorithm is affected by the network size and the average

size of the communities. The other network parameters are given

in the caption. From the plots we conclude that OSLOM and

Infomap have a basically equivalent performance.

It is important to test the performance of the algorithms on large

graphs as well, given the increasing availability of large networked

datasets. The question is if and how their performance is affected

by the network size. Fig. 7 shows that both OSLOM and Infomap

are effective at finding communities on large LFR graphs. We

remark that the inferior accuracy of OSLOM when communities

are better defined comes from the fact that the method

occasionally finds homeless vertices, i.e. vertices that are not

significantly linked to any cluster. These are vertices that happen

not to have a significant excess of neighbors within their

community with respect to the number of neighbors in the other

communities, despite the fact that the average number of internal

neighbors is high. This happens because of fluctuations, and the

method judges such vertices as not belonging to any group, which

makes sense. This issue of the homeless vertices is a general feature

of OSLOM. One should not judge it negatively, though. If a

vertex i happens to have a number of external neighbors which is

Figure 6. Tests on undirected and unweighted LFR benchmark graphs without overlapping communities. The parameters of the
graphs are: average degree SkT~20, maximum degree kmax~50, exponents of the power law distributions are t1~2 for degree and t2~1 for
community size, S and B mean that community sizes are in the range ½10,50� (‘‘small’’) and ½20,100� (‘‘big’’), respectively. We considered two network
sizes: N~1000 (top) and N~5000 (bottom). The two curves refer to OSLOM (diamonds) and Infomap (circles).
doi:10.1371/journal.pone.0018961.g006
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appreciably higher than the expected external degree of the vertex

mki, the condition pwq of the planted ‘-partition model does not

hold, so in principle the vertex should not be put in its original

community. The confusion derives from the fact that the condition

pwq holds on average.

LFR benchmark with overlapping communities. The

LFR benchmark also accounts for overlapping communities, by

assigning to each vertex an equal number of neighbors in different

clusters [42]. To simplify things, we assume that each vertex

belongs to the same number of communities. We cannot use

Infomap for the comparison, as it delivers ‘‘hard’’ partitions,

without overlaps between clusters. So we used two recent methods,

that have a good performance on LFR graphs with overlapping

communities: COPRA [52], based on label propagation [53], and

MOSES [54], based on stochastic block modeling [55]. COPRA

and MOSES are more efficient to detect overlapping communities

in LFR benchmark graphs than the popular Clique Percolation

Method (CPM) [19], which is the reason why we do not use the

CPM here. In Fig. 8 we show how the performance of each

method decays with the fraction of overlapping vertices, for

different choices of the mixing parameter and for the small (S) and

big (B) communities defined above. Since in social networks there

may be many vertices belonging to several groups, we also

considered the extreme situation of graphs consisting entirely of

overlapping vertices. In this case, by increasing the number of

memberships of the vertices communities become more fuzzy and

it gets harder and harder for any method to correctly identify the

modules. From Fig. 8 we deduce that OSLOM significantly

outperforms COPRA in both tests and MOSES in the test with

overlapping and non-overlapping vertices, while the performances

of OSLOM and MOSES are quite close when all vertices are

overlapping.

Hierarchical LFR benchmark. OSLOM is capable to

handle hierarchical community structure as well. To test its

performance we have designed an algorithm that produces a

version of the LFR benchmark with hierarchy. To keep things

simple, we consider a two-level hierarchical structure (Fig. 9). The

idea is to use the wiring procedure of the original algorithm twice, first

for the micro-communities and then for the macro-communities. In

order to do so, we need two mixing parameters: m1, the fraction of

neighbors of each vertex belonging to different macro-communities;

m2, the fraction of neighbors of each vertex belonging to the same

macro-community but to different micro-communities.

The question is whether the algorithm is able to recover both

planted partitions of the benchmark, which we call Fine (micro-

communities) and Coarse (macro-communities). The partitions

found by the algorithm can be one, two or more, we call them

partition 1,2,3 . . .. In the test, whose results are illustrated in

Fig. 10, we compare the Fine partition with partition 1 (Fine 1),

the Coarse partition with partition 2 (Coarse 2), and the Coarse

partition with partition 1 (Coarse 1). We compare OSLOM with a

recent extension of Infomap to networks with hierarchical

community structure [56]. In the plots we show how the similarity

of the three pairs of partitions mentioned above varies by

increasing m2 but keeping m1 constant (we picked the values

m1~0, 0:1, 0:2, 0:3). For a better comparison of the panels we put

on the x-axis the sum m1zm2, representing the fraction of

neighbors of a vertex not belonging to its micro-community. We

find that, when m2 increases, the Fine partition becomes difficult to

resolve and, for m1zm2 *> 0:7, it cannot be found anymore and

both algorithms can only find the Coarse partition. Instead, for

smaller value of m2, the algorithms can recover both levels.

OSLOM performs better than Infomap if m1 is not too small.

Random graphs and noise. We check whether OSLOM is

also able to recognize the absence, and not simply the presence, of

community structure. In random graphs vertices are connected to

each other at random, modulo some basic constraints like, e. g.,

keeping some prescribed degree distribution or sequence. In this way,

there are by definition no groups of vertices that preferentially link to

each other, so there are no communities. There may be subgraphs

with an internal edge density higher than the average edge density of

the whole network, but they originate from stochastic fluctuations

(noise). A good community finding algorithm should be able to

recognize that such subgraphs are false positives, and discard them.

Here we want to see if OSLOM distinguishes ‘‘order’’ from ‘‘noise’’.

For this purpose, we carried out two tests.

Figure 7. Tests on large undirected and unweighted LFR benchmark graphs without overlapping communities. The network sizes are
N~50000 (left) and N~100000 (right), the maximum degree kmax~200 and the community size ranges from 20 to 1000. The other parameters are
the same as those used for the graphs of Fig. 6. The two curves refer to OSLOM (diamonds) and Infomap (circles).
doi:10.1371/journal.pone.0018961.g007
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In Fig. 11 we applied OSLOM and Infomap to Erdös-Rényi

random graphs [57] and scale-free networks [58]. The goal is to

see whether the algorithms recognize that there are no actual

communities. Good answers are the partition with as many

communities as vertices, or the partition with all vertices in the

same community. Let us call P the partition found by the

algorithm at hand. Clusters in P containing at least two vertices

and smaller than the whole network indicate that the method has

been fooled. The fraction of graph vertices belonging to those

clusters is a measure of reliability: the lower this number, the better

the algorithm. In Fig. 11 we show this variable as a function of the

average degree SkT of the random graphs we considered. For

OSLOM it remains very low for all values of SkT. This is not

surprising, since OSLOM estimates the statistical significance of

clusters, and is therefore ideal to detect stochastic fluctuations.

Infomap instead finds many non-trivial clusters when SkT is low,

whereas it correctly recognizes the absence of community structure

if SkT increases.

The second test deals with graphs consisting of an ordered part,

with well-defined clusters, and a noisy part, consisting of vertices

randomly attached to the rest of the network. The ordered part is

an LFR benchmark graph with 1000 vertices and represents the

starting configuration of our system. The noisy vertices (up to 2000
in number) are successively added in sequence, and a newly added

vertex is linked to the other ones via preferential attachment [58].

The initial degree of the noisy vertices is drawn from a power law

distribution with kmax~100 and exponent 3. We measure two

things, as a function of the number of noisy vertices: the similarity

between the set of noisy vertices and the set of homeless vertices

found by OSLOM, which is expressed by the Jaccard Index [59]

(Fig. 12, left); the similarity between the planted partition of the

ordered part of the graph and the subset of the partition found by

OSLOM including (only) the vertices of the ordered part, which is

expressed by the normalized mutual information (Fig. 12, right).

We compare OSLOM with Infomap and COPRA [52]. We find

that OSLOM correctly separates the clusters and the noise up to a

number of about 300 noisy vertices, which represent almost a third

of the whole network. Infomap and COPRA, instead, do not

recognize the noisy vertices, no matter how small their number is.

Also, they tend to mix noisy vertices with the clusters of the

planted partition of the ordered part, as shown by the fact that the

partition they recover never exactly match the planted partition,

Figure 8. Test on undirected and unweighted LFR benchmark with overlapping communities. The parameters are: N~1000, SkT~20,
kmax~50, t1~2, t2~1. S and B indicate the usual ranges of community sizes we use: ½10,50� and ½20,100�, respectively. We tested OSLOM against two
recent methods to find covers in graphs: COPRA [52] and MOSES [54]. The left panel displays the normalized mutual information (NMI) between the
planted cover and the one recovered by the algorithm, as a function of the fraction of overlapping vertices. Each overlapping vertex is shared
between two clusters. The four curves correspond to different values of the mixing parameter m (0:1 and 0:3) and to the community size ranges S and
B. The right panel shows a test on graphs whose vertices are all shared between clusters. Each vertex is member of the same number of clusters. The
plot shows the NMI as a function of the number of memberships of the vertices. Each curve corresponds to a given value of the average degree SkT.
The graph parameters are N~2000, kmax~60, m~0:2, t1~2, t2~1. Community sizes are in the range ½20,50�.
doi:10.1371/journal.pone.0018961.g008
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Figure 9. A realization of the hierarchical LFR benchmark with two levels. Stars indicate overlapping vertices.
doi:10.1371/journal.pone.0018961.g009

Figure 10. Test on hierarchical LFR benchmark graphs (unweighted, undirected and without overlapping clusters). We compare three
pairs of partitions: the lowest hierarchical partition found by the algorithm (indicated by 1) with the set of micro-communities of the benchmark
(Fine); the lowest hierarchical partition found by the algorithm with the set of macro-communities of the benchmark (Coarse); the second lowest
hierarchical partition found by the algorithm (indicated by 2) with the set of macro-communities of the benchmark. The corresponding similarities are
plotted as a function of m1zm2 , for fixed m1 . There are 10000 vertices, the average degree SkT~20, the maximum degree kmax~100, the size of the
macro-communities lies between 400 and 4000 vertices, the size of the micro-communities lies between 10 and 100 vertices. The exponents of the
degree and community size distributions are t1~2 and t2~1.
doi:10.1371/journal.pone.0018961.g010
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not even when just a few noisy vertices are present. These results

are actually understandable in the case of Infomap, which is based

on the minimization of the code length required to describe

random walks taking place on the graph: singletons (clusters

consisting of single vertices) are generally not admitted because

they increase the amount of information required to map the

process, due to the high number of transitions of the walker from

the singletons to the rest of the graph and back.

Real networks
In this section we discuss the application of OSLOM to

networks from the real world. In Table 1 we list the networks

considered in our analysis, along with some basic statistics

obtained from the detection of their community structure with

OSLOM.

We analyzed different types of systems: social, information,

biological and infrastructural networks. Here we discuss only some

of them, the rest of the analysis can be found in the Supporting

Information S1.

The word association network. This network is built on the

University of South Florida Free Association Norms [60]. Here the

presence of an edge between words A and B indicates that some

people associate B to the word A. This network is considered a

paradigmatic example of graph with overlapping communities

[19], since several words may have various meanings and belong

to different groups of words. In Fig. 13 we see a few subgraphs of

the word association network, revolving around four keywords:

bright, knowledge, music and play. We see that the keywords are

shared among several clusters, which are semantically highly

homogeneous. For instance, bright belongs to three groups,

centered on the words color, shine and smart, respectively, which

makes sense. In the same subgraph, the words sun and dark are also

overlapping vertices, belonging to the groups of color and shine, as

one might expect. In the subgraph centered on knowledge, one

distinguishes the groups referring to the words mind, intelligent, expert

and college/university. Here there are many overlapping vertices, like

the word intelligence, shared between the groups of mind and

intelligent, and a bunch of terms indicating (mostly) professional

status within schools and/or universities, like student, professor,

teacher, etc., which lie between the groups of expert and college/

university. In the third subgraph, the word music is shared by the

groups of instrument, song/dance and noise/sound: other overlapping

vertices are the words sing and voice, lying between song/dance and

noise/sound, and the words bass and saxophone, belonging to the

groups of song/dance and instrument. Finally, the word play sits

between the communities of sport, music and youth/kid; other

overlapping vertices in this subgraph include game, children, toy, etc.

UK commuting. This is the network of flows of commuters

between areas of the United Kingdom, and therefore it has a

clearly geographic character. It is composed of 10608 vertices,

each representing a ward, i. e. a geographical division used in the

UK census for statistical purposes. The whole territory of the

United Kingdom is divided into wards. Each edge corresponds to

a flow of commuters between the ward of origin and that of

destination, with a weight accounting for the number of

commuters per day. The data were collected during the 2001
UK census, when the ward of residence and the ward of work/

study was registered for a sizeable part of the British population.

The database can be accessed online at the site of the Office for

National Statistics http://www.ons.gov.uk/census. OSLOM finds

three hierarchical levels (Fig. 14). The clusters of the second level

delimit geographical areas typically centered about one major

town. In the highest level the areas of England, Wales, Scotland

and Northern Ireland are clearly recognizable. Interestingly,

Northern Ireland and Scotland are parts of the same community,

due to the large flow of commuters between the two regions,

Figure 11. Test on random graphs. We plot the fraction of vertices belonging to non-trivial clusters (i.e. to clusters with more than one and less
than N vertices, where N is as usual the size of the graph), as a function of the average degree of the graph. The curves correspond to Erdös-Rényi
graphs (diamonds) and scale-free networks (circles). All graphs have N~1000 vertices. The only parameter needed to build Erdös-Rényi graphs is the
probability that a pair of vertices is connected, which is determined by the average degree SkT. The scale-free networks were built with the
configuration model [39], starting from a fixed degree sequence for the vertices obeying the predefinite power law distribution. The parameters of
the distribution are: degree exponent c~2, maximum degree kmax~200.
doi:10.1371/journal.pone.0018961.g011
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despite the geographical separation. Black points represent

overlapping vertices.

LiveJournal and UK Web. We also applied OSLOM to two

large networks. The first is a network of friendship relationships

between users of the on-line community LiveJournal (www.

livejournal.com), and was downloaded from the Stanford Large

Network Dataset Collection (http://snap.stanford.edu/data/).

The second is a crawl of the Web graph carried out by the

Stanford WebBase Project (http://dbpubs.stanford.edu:8091/

,testbed/doc2/WebBase/), within the UK domain (.uk). We

remind that the Web graph is a directed graph whose vertices are

Web pages, while the edges are the hyperlinks that enable one to

surf from one page to another. These two systems are too large for

OSLOM, due to the huge variety of possible cluster sizes to

explore. Therefore we applied a two-step method: in the first step,

we derived an initial partition P? with the Louvain method [61],

which is able to handle large networked datasets; in the second

step, we apply OSLOM to refine the clusters of P?. In principle,

this procedure should yield the same partitions/covers as applying

OSLOM directly, if one repeated OSLOM’s cluster search many

times. But this would make the calculations too lengthy, so, in

order to complete the analysis within a reasonable time, it is

necessary to keep the number of iterations low. In this way there is

the big advantage of drastically reducing the computational

complexity, which makes large systems tractable, even if results

would be more accurate if one could apply OSLOM from scratch.

Clearly, since different iterations are independent processes, one

could sensibly increase the statistics by distributing the iterations

among different processors, if available.

In Fig. 15 we present the distribution of cluster sizes of the first

two hierarchical levels found by OSLOM. The results are

obtained by performing a single iteration on a workstation HP

Z800. For the Web graph, which is the larger system, with nearly

20 million vertices and 300 million edges (see Table 1), the analysis

was completed in about 40 hours. For the social network of

LiveJournal we can compare the results with the corresponding

distributions found by Infomap and the Label Propagation

Method (LPM) proposed by Leung et al. [62], which were

computed in a recent analysis [48]. In that work the original

Infomap was used, so neither Infomap nor the LPM could detect

hierarchical community structure and there is just one cluster size

distribution, corresponding to the single partition recovered. The

distributions are broad and quite similar across different methods.

Interestingly, the two hierarchical levels of LiveJournal (OSLOM 1

and OSLOM 2) are not too different, indicating a sort of self-

similarity of the community structure. For the Web the two levels

are more dissimilar and the distributions have a clear power law

decay (with different exponents) up to a cutoff, which is

approximately the same for both curves (*2000 vertices).

Dynamic datasets: the US air transportation network.

For the last application, we used a time-stamped dataset, the US air

transportation network. The data can be downloaded from the

Bureau of Transportation Statistics (US government) (http://www.

bts.gov). Vertices are airports in the USA and edges are weighted by

the number of passengers transported along the corresponding

routes. In Fig. 16 we show the geographical location of the airports

and their communities, indicated by the symbols, for three snapshots,

corresponding to the traffic in March, June and September 2009,

respectively. We remind that for dynamical datasets we usually take

the partition/coverP(t) of the system at time t, and we use it as initial

partition/cover for the topology of the system at time tzDt, which is

then refined by OSLOM, in order to ‘‘adapt’’ P(t) to the current

structure. This is done to exploit the information of more snapshots at

the same time. Since the three maps of Fig. 16 are mostly illustrative,

communities were derived by applying directly OSLOM to the

corresponding snapshots, for simplicity. The diagram indicates the

similarity between networks and their corresponding partitions/

covers in different snapshots. Each snapshot represents the whole

traffic of one trimester, which corresponds to a season, while Dt~1
year, as we want to measure the variation of the network structure in

consecutive seasons. The similarity between partitions/covers is

computed with the normalized mutual information, as usual. The

Figure 12. Test on graphs including communities and noise. The communities are those of an LFR benchmark graph (undirected, unweighted
and without overlapping clusters), with N~1000, SkT~20, kmax~50, m~0:2. The cluster size ranges from 10 to 50 vertices. The noise comes by
adding vertices which are randomly linked to the existing vertices, via preferential attachment. The test consists in checking whether the community
finding algorithm at study (here OSLOM, Infomap and COPRA) is able to find the communities of the planted partition of the LFR benchmark and to
recognize as homeless the other vertices.
doi:10.1371/journal.pone.0018961.g012
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similarity of two weighted networks like the ones at study is measured

in the following way. First, one computes the distance dt,tzDt between

the matrices ~WWt and ~WWtzDt: dt,tzDt~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ij ( ~WW t
ij{

~WW tzDt
ij )2

q
. The

matrix ~WWt is derived from the standard weight matrix Wt by dividing

each edge weight by the sum of all edge weights. This is done because

the traffic flows tend to increase steadily in time, so comparing the

original weight matrices is not appropriate. The quantity dt,tzDt is a

dissimilarity measure. We turn it to a similarity index by changing its

sign, adding a constant and rescaling the resulting values. Since we

wish to compare the trend of the network similarity with that of the

partition/cover similarity, the additional constant and the rescaling

factor are chosen such to reproduce the average and the variance of

the curve of the normalized mutual information. After this

operation, the two trends are finally comparable. The diagram

shows that both measures follow a yearly periodicity, with peaks

corresponding to the winter season, which is then more stable than

the others.

Discussion

We have introduced OSLOM, the first method that finds

clusters in networks based on their statistical significance. It is a

multi-purpose technique, capable to handle various types of

graphs, accounting for edge direction, edge weights, overlapping

communities, hierarchy and network dynamics. Therefore, it can

be used for a wide variety of datasets and applications.

We have thoroughly tested OSLOM against the best algorithms

currently available on various types of artificial benchmark graphs,

with excellent results. In particular, OSLOM is superior on

directed graphs and in the detection of strongly overlapping

clusters. Moreover, it is an ideal method to recognize the absence

of community structure and/or the presence of randomness in

graphs. In some cases OSLOM returns slightly less accurate results

than other methods, because it finds several homeless vertices

when communities are fuzzy. This is due to the fact that, in the

realizations of benchmark graphs, it may happen that some

vertices end up having the same number of neighbors (or even

more) in other communities than in their own, due to fluctuations,

even if on average this does not happen. So, the classification of

those vertices, imposed by the planted ‘-partition model, is not

justified topologically. This is an important general issue that needs

to be assessed in the future, to avoid systematic errors in the testing

procedure.

OSLOM is a local algorithm, so it respects the nature of

community structure, which is a local feature of networks, the

more so the larger the systems at study. However, the null model

adopted to estimate the statistical significance of clusters is the

configuration model, which is global. This is the same null model

adopted in modularity optimization [63], and is responsible for the

serious problems of this technique, like its well known resolution

limit [64]. Therefore we perform an iterative cluster search within

the clusters found after the first application of the method, by

considering each cluster as a network on its own. In this way we

progressively limit the horizon of the part of the network under

exploration, and we are able to find the smallest significant

clusters, which are the natural building blocks of the network and

the basis of its hierarchical community structure. So the null

model, originally global, gets confined to smaller and smaller

portions of the graph. The actual resolution of the method is thus

not due to the null model, but to the choice of the threshold P. In

this paper we have set P~0:1, which is often used in various

contexts and delivers an excellent performance on the benchmark

graphs we have adopted. Nevertheless, how much a real graph

deviates from a random graph depends on the specific system at

hand, and it would be more appropriate to estimate the threshold

P case by case. This is an issue to consider for future work. We

remark that also for modularity optimization one could in

principle iteratively restrict the null model to the clusters found

by the method. However, modularity is based on the expected value

of variables estimated on the null model, neglecting random

fluctuations, which is why modularity can attain large values on

specific partitions of random graphs [65–67]. OSLOM instead

accounts for those fluctuations, so it is far more reliable, in this

respect. Furthermore OSLOM is a local method, so it does not

suffer from the severe problems coming from modularity’s global

optimization [68].

Another important aspect to emphasize is the need to perform

many iterations, to get more accurate results. This is not a specific

Table 1. Basic statistics of the real networks we analyzed, including the main features of their community structure, detected by
OSLOM.

Network N E SkT Nc SsT SmT fh

Zachary’s club 34 78 4.59 2 17.0 1.03 0.0294

Dolphins 62 159 5.13 2 32.5 1.08 0.0322

Football 115 613 10.7 11 10.0 1.00 0.0434

UK commuting 10608 1220337 230.07 248 45.43 1.06 0.00386

C. elegans 453 2025 8.94 25 17.04 1.22 0.229

Word association 7207 31784 8.82 261 22.48 1.35 0.395

Live Journal 4846609 42851237 17.6 407451 10.01 1.19 0.294

www. uk 18484117 292244462 15.81 590257 28.08 1.02 0.125

US airports 2009 (jan) 448 7659 34.19 11 33.81 1.28 0.352

US airports 2009 (mar) 456 8491 37.24 6 67.83 1.22 0.272

US airports 2009 (jun) 453 8480 37.42 9 45.33 1.28 0.315

US airports 2009 (sep) 452 7870 34.81 9 41.55 1.26 0.347

From left to right, we list the number of vertices N and edges E, the average degree SkT, the number of clusters Nc , the average cluster size SsT, the average number
of memberships per vertex SmT and the fraction fh of vertices not assigned to any cluster (homeless vertices). The values related to the community structure refer to the
lowest hierarchical level.
doi:10.1371/journal.pone.0018961.t001
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feature of OSLOM, but it should be done for all community

detection techniques with a stochastic character, like methods

based on optimization (e. g., modularity optimization). In the

literature there is the general attitude to perform a single iteration,

and to reduce the complexity of an algorithm to the time required

to carry out one iteration. But this is not appropriate, especially on

Figure 13. Application of OSLOM to real networks: the word association network. Stars indicate overlapping vertices.
doi:10.1371/journal.pone.0018961.g013

Figure 14. Application of OSLOM to real networks: flows of commuters in the UK. Black points indicate overlapping vertices.
doi:10.1371/journal.pone.0018961.g014
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Figure 15. Application of OSLOM to real networks: friendships of LiveJournal users (left) and sample of the .uk domain of the Web
graph (right). We show the distribution of cluster sizes obtained by OSLOM for the first two hierarchical levels (OSLOM 1 and OSLOM 2). For
LiveJournal we can compare the distributions with those found with Infomap [49] and the Label Propagation Method (LPM) by Leung et al. [62].
doi:10.1371/journal.pone.0018961.g015

Figure 16. Application of OSLOM to real networks: US airport network. The maps show the position of the airports, which are represented
by symbols, indicating the communities found by applying OSLOM directly to the corresponding network, without exploiting the information of
previous snapshots. The diagram shows the ‘‘seasonality’’ of air traffic. The normalized mutual information (diamonds) was computed comparing the
cover of the system at time t adjusted by OSLOM on the network at time tzDt, and the cover obtained by applying OSLOM directly to the system at
time tzDt. The circles are estimates of the similarity of the network matrices of snapshots separated by Dt (one year). For each year we took four
snapshots, by cumulating the traffic of each trimester. The most stable networks are typically in winter (vertical lines).
doi:10.1371/journal.pone.0018961.g016
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large networks. For instance, by performing a single iteration,

vertices lying on the border between clusters may be assigned to a

specific cluster, while in many cases they are overlapping. By

combining the results of several iterations, instead, it is more likely

to distinguish overlapping vertices from the others. Furthermore,

one can compute the strength of the membership of vertices in

different clusters, from the frequency with which they were

classified in each cluster. One can also disambiguate stable from

unstable clusters, which could be recovered from specific

iterations. So, it is crucial to collect and combine the results of

many iterations. Of course, the complexity of the method grows

with the number of iterations, but it can be considerably reduced

by distributing runs among many different processors, if large

computer clusters are available.

The running time of OSLOM is dominated by the exhaustive

search of significant vertices, inside and outside the clusters. This

search could be carried out with greedy approaches, with a huge

computational advantage, and this is an improvement we plan to

implement in the near future. On the other hand, if one wishes to

attack very large graphs, OSLOM could be used at a second stage,

as a refinement technique, to clean the results of an initial partition

delivered by a fast algorithm. In this case, since the initial clusters

are usually cores or parts of the significant clusters we are looking

for, OSLOM converges far more rapidly than its direct application

without inputs. We have seen in the previous section that, by

combining OSLOM with the Louvain method by Blondel et al.,

we were able to handle systems with millions of vertices.

We have proposed a recipe to deal with the increasingly more

important issue of detecting communities in dynamic networks.

The idea is to take advantage of the information of different

snapshots at the same time, by ‘‘adapting’’ the partition/cover of

the earlier snapshot to the topology of the other one. In this way it

is possible to uncover the correlation between the structures of the

system at different time stamps.

We have shown the versatility of OSLOM by applying it to

various networked datasets. OSLOM provides the first compre-

hensive toolbox for the analysis of community structure in graphs

and is an ideal complement of existing tools for network analysis.

The algorithm, with all its variants (including a fast two-step

procedure for the analysis of very large networks) is implemented

in a freely downloadable and documented software (http://www.

oslom.org).
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27. Sales-Pardo M, Guimerà R, Moreira AA, Amaral LAN (2007) Extracting the

hierarchical organization of complex systems. Proc Natl Acad Sci USA 104:

15224–15229.

28. Clauset A, Moore C, Newman MEJ (2007) Structural Inference of Hierarchies

in Networks. In: Airoldi EM, Blei DM, Fienberg SE, Goldenberg A, Xing EP,

et al. (2007) Statistical Network Analysis: Models, Issues, and New Directions,

Springer, Berlin, Germany, volume 4503 of Lect. Notes Comp. Sci. pp 1–13.

29. Clauset A, Moore C, Newman MEJ (2008) Hierarchical structure and the

prediction of missing links in networks. Nature 453: 98–101.

30. Bianconi G, Pin P, Marsili M (2009) Assessing the relevance of node features for

network structure. Proc Natl Acad Sci USA 106: 11433–11438.

31. Lancichinetti A, Radicchi F, Ramasco JJ (2010) Statistical significance of

communities in networks. Phys Rev E 81: 046110.

32. Hopcroft J, Khan O, Kulis B, Selman B (2004) Tracking evolving communities

in large linked networks. Proc Natl Acad Sci USA 101: 5249–5253.

33. Backstrom L, Huttenlocher D, Kleinberg J, Lan X (2006) Group formation in

large social networks: membership, growth, and evolution. In: KDD ’06:

Proceedings of the 12th ACM SIGKDD international conference on Knowledge

discovery and data mining. New York, NY, USA: ACM. pp 44–54.

34. Chakrabarti D, Kumar R, Tomkins A (2006) Evolutionary clustering. In: KDD

’06: Proceedings of the 12th ACM SIGKDD international conference on

Knowledge discovery and data mining. New York, NY, USA: ACM. pp

554–560.

Finding Significant Communities in Networks

PLoS ONE | www.plosone.org 17 April 2011 | Volume 6 | Issue 4 | e18961



35. Palla G, Barabási AL, Vicsek T (2007) Quantifying social group evolution.

Nature 446: 664–667.

36. Asur S, Parthasarathy S, Ucar D (2007) An event-based framework for

characterizing the evolutionary behavior of interaction graphs. In: KDD ’07:

Proceedings of the 13th ACM SIGKDD international conference on Knowledge

discovery and data mining. New York, NY, USA: ACM. pp 913–921.

37. Mucha PJ, Richardson T, Macon K, Porter MA, Onnela J (2010) Community

Structure in Time-Dependent, Multiscale, and Multiplex Networks. Science

328: 876.

38. Radicchi F, Lancichinetti A, Ramasco JJ (2010) Combinatorial approach to

modularity. Phys Rev E 82: 026102.

39. Molloy M, Reed B (1995) A critical point for random graphs with a given degree

sequence. Random Struct Algor 6: 161–179.

40. Newman MEJ, Girvan M (2004) Finding and evaluating community structure in

networks. Phys Rev E 69: 026113.

41. Lancichinetti A, Fortunato S, Radicchi F (2008) Benchmark graphs for testing

community detection algorithms. Phys Rev E 78: 046110.

42. Lancichinetti A, Fortunato S (2009) Benchmarks for testing community

detection algorithms on directed and weighted graphs with overlapping

communities. Phys Rev E 80: 016118.

43. Condon A, Karp RM (2001) Algorithms for graph partitioning on the planted

partition model. Random Struct Algor 18: 116–140.

44. Albert R, Jeong H, Barabási AL (2000) Error and attack tolerance of complex

networks. Nature 406: 378–382.

45. Newman MEJ (2004) Detecting community structure in networks. Eur Phys J B

38: 321–330.

46. Radicchi F, Castellano C, Cecconi F, Loreto V, Parisi D (2004) Defining and

identifying communities in networks. Proc Natl Acad Sci USA 101: 2658–2663.

47. Clauset A, Newman MEJ, Moore C (2004) Finding community structure in very

large networks. Phys Rev E 70: 066111.

48. Lancichinetti A, Kivelä M, Saramäki J, Fortunato S (2010) Characterizing the

community structure of complex networks. PLoS ONE 5: e11976.

49. Rosvall M, Bergstrom CT (2008) Maps of random walks on complex networks

reveal community structure. Proc Natl Acad Sci USA 105: 1118–1123.

50. Lancichinetti A, Fortunato S (2009) Community detection algorithms: A

comparative analysis. Phys Rev E 80: 056117.

51. Danon L, Daz-Guilera A, Duch J, Arenas A (2005) Comparing community

structure identification. J Stat Mech P09008.
52. Gregory S (2010) Finding overlapping communities in networks by label

propagation. New Journal of Physics 12: 103018.

53. Raghavan UN, Albert R, Kumara S (2007) Near linear time algorithm to detect
community structures in large-scale networks. Phys Rev E 76: 036106.

54. McDaid A, Hurley NJ (2010) Detecting highly overlapping communities with
model-based overlapping seed expansion. In: ASONAM 2010.

55. Nowicki K, Snijders TAB (2001) Estimation and Prediction for Stochastic

Blockstructures. J Am Stat Assoc 96.
56. Rosvall M, Bergstrom CT (2010) Multilevel compression of random walks on

networks reveals hierarchical organization in large integrated systems. Eprint
arXiv: 10100431.
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64. Fortunato S, Barthélemy M (2007) Resolution limit in community detection.

Proc Natl Acad Sci USA 104: 36–41.
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